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Abstract

A new approach to the inversion problem of dynamical
transmission electron diffraction is described, based on
the method of generalized projections in set theory. An
algorithm is described that projects between two sets of
constrained scattering matrices. This iterative process
can be shown to converge, giving the required structure
factors (for some choice of origin) if the sets are convex.
For the dynamical inversion problem, the set topology is
that of an N2 torus, the sets are not convex, and traps are
therefore sometimes encountered. These can be distin-
guished from solutions, allowing the algorithm to be
restarted until a solution is found. Examples of
successful inversion from simulated multiple-scattering
data are given, which therefore solve the phase problem
of electron diffraction for centrosymmetric or noncen-
trosymmetric crystal structures. The method may also be
useful for the three-beam X-ray diffraction problem.

1. Introduction

The aim of this work is to develop methods for the direct
determination of inorganic crystal structures from the
intensities in dynamical transmission electron diffraction
patterns. As pointed out by A. Moodie many years ago,
the dependence of dynamical intensities on the phases
of structure factors suggests that this may be possible.
Since these intensities are solutions of a relativistically
corrected one-electron SchroÈ dinger equation describing
the elastic scattering of fast electrons traversing a thin
crystal, the problem amounts to the inversion problem
of quantum mechanics (with constant total energy). Our
work is based on the use of algorithms that can provide
the complex exponential of large complex matrices
(Moler & Van Loan, 1979), rather than the study of
closed-form solutions to few-beam problems and
symmetry reduction (Moodie et al., 1996).

In this paper, we introduce a new approach, based on
set theory. We use the method of generalized projec-
tions, from which the theory of projection onto convex

sets (POCS) has been derived and widely used in image
processing (Sezan, 1992; Stark, 1987). Very brie¯y, we
describe a convergent procedure for ®nding the inter-
section between the set of all scattering matrices, the
moduli of whose elements are known, and the set of all
scattering matrices which derive from structure matrices
of known symmetry and diagonal. This intersection
de®nes all solutions to the inversion problem related by
different choices of origin. Methods of dealing with
stagnation, which may also occur, are described. An
example of successful inversion is given, using simulated
data for the diffracted intensities from several diffrac-
tion patterns at different Bragg conditions near an axial
orientation.

2. Forward-scattering summary

Many authors have described the forward problem of
multiple elastic scattering of electrons traversing a thin
crystal. For our purposes, the most relevant are the
Bloch-wave treatments of Bethe (1929), Blackman
(1939), Humphreys (1979), Niehrs (1959), Speer et al.,
(1990), Spence & Zuo (1992) and Sturkey (1962). The
solution of the SchroÈ dinger equation may be cast in the
form of an eigenvalue dispersion equation

AC j �  jC j; �1�

where the structure matrix A = A(Kt) of order N (odd)
contains the wanted structure factors Fgh � Ugÿh=2K in
off-diagonal positions and excitation errors sg on the
diagonal. These structure factors are the Fourier coef-
®cients of the two-dimensional crystal Coulomb poten-
tial V(r), projected in the beam direction. We may take
the central element of A to be zero. Here, sg, the
eigenvectors Cg

(j) and the eigenvalues (j) are all func-
tions of the beam direction, de®ned by Kt, the tangential
component of the incident wavevector K. For centric
crystals Fgh � Fhg may be chosen real if a suitable origin
is taken, A is symmetric and, for the systematic orien-
tation, entries along any sub- or superdiagonal are
equal. Cj is a column eigenvector whose elements are the
real quantities Cg

(j). For noncentrosymmetric (acentric)
crystals, Fgh � F�hg are complex,  j are real, A is

112

# 1999 International Union of Crystallography Acta Crystallographica Section A
Printed in Great Britain ± all rights reserved ISSN 0108-7673 # 1999

² Permanent address: Department of Physics, Arizona State Univer-
sity, Tempe, AZ 85287, USA.



J. C. H. SPENCE, B. CALEF AND J. M. ZUO 113

Hermitian and has symmetry about its antidiagonal
(Allen, Josefsson & Leeb, 1998), and Cg

(j) are complex.
With boundary conditions appropriate to a parallel-

sided slab of crystal, the column vector 'g containing the
Bragg beam amplitudes diffracted by a thin crystal of
thickness t can be written

'g � S'0; �2�
where (Hirsch et al., 1977)

S � C�L�Cÿ1 � exp�2�iAt� �3�
with C an orthogonal matrix of eigenvectors Cj and L a
diagonal matrix whose jth element is �j� � exp�2�i jt�:
C diagonalizes both S and A. The column vector '0,
describing the incident wave, contains zeros everywhere
except for a central entry of unity in the symmetric
orientation. All the columns of S may thus be exposed to
experimental observation by using inclined incident
beams at various Bragg conditions described (to a good
approximation) by moving the position of the unity
entry in '0.

In the absence of absorption, the structure matrix A
has symmetry across its antidiagonal. Then, since A is
also Hermitian, the scattering matrix S � S�Kt; t� is in
general complex, orthogonal and unitary, with complex
eigenvalues (j) of unit modulus. C is complex and
unitary. Since C is orthogonal, Cÿ1 � CT . The eigenva-
lues  are real in the absence of absorption. For acentric
crystals without absorption, S is also symmetric about its
antidiagonal only in the zone-axis orientation �Kt � 0�.
For centrosymmetric crystals without absorption (or
centrosymmetric projections of acentric crystals), S is
also symmetric for all orientations. For centrosymmetric
crystals with absorption, S is complex, symmetric, not
unitary or orthogonal, and (j) are complex. For acentric
crystals with absorption, S is neither symmetric nor
unitary, and (j) are complex. With a symmetrically
disposed diagonal of excitation errors, A contains
complex entries Fgh comprising, in general (for non-
absorbing acentric crystals), �N2 ÿ 1�=2 distinct real
quantities which are sought. The �N � 1�N=2 complex
entries in symmetric S (for non-absorbing centric crys-
tals) are related by orthogonality requirements. In the
systematics orientation we treat here, A contains only
�N ÿ 1� distinct real structure factors Fgh (if an origin is
taken on a center of symmetry), far less than the
�N � 1�N=2 known amplitudes in S.

Some recent developments relevant to this work
include:

(i) The paper by Allen et al. in this volume (Allen et
al., 1999) shows how the elements of the structure matrix
A (containing wanted structure factors) may be
computed directly without ambiguity from a knowledge
of all the complex entries in the scattering matrix
S � exp�2�iAt�. By comparing the diagonal of A
(containing known excitation errors sg) with diagonal

entries in ln S, the integers arising in the complex
logarithm function required for inversion can be found.
In some cases, the symmetries across the antidiagonal of
A must be imposed on ln S. The thickness t of the crystal
need not be known. Thus, A may be found directly if
complex S is known. The zone-axis orientation may not
be used.

(ii) In an earlier paper (Spence, 1998), it was shown
that, by collecting diffraction patterns from a range of
incident-beam orientations, the moduli of all the
elements in S can be found. Each two-dimensional
diffraction pattern ®lls one column of S. Successive
columns are obtained by incrementing Kt by reciprocal-
lattice vectors. The phase difference between pairs of
elements of the same row and adjacent columns may
also be found using experiments in which coherent
convergent-beam discs overlap (dynamical ptycho-
graphy). Advantage is also taken of the known
symmetry of S.

A variety of other structure determination schemes
that combine image and diffraction data have been
described with varying degrees of success (Dorset,
1995), some based on dynamical conditions (Sinkler et
al., 1998). Here we are concerned with inversion from
dynamical diffraction pattern intensities only.

In summary, the method of Allen et al. (1999) solves
the inversion problem of dynamical transmission elec-
tron diffraction if all the complex scattering amplitudes
in S can be found. Unlike the present method, it does
not require solution of the forward-scattering problem.
A limited set of these may be obtained from high-
resolution electron-microscope (HREM) imaging or
ptychography. Because it involves interference between
neighboring orders only, dynamical ptychography is not
limited in resolution in the way that HREM data are,
and so can provide many phase relationships to
constrain any inversion procedure.

3. Inversion by the method of generalized projections

We assume that the Bravais lattice and space group of a
thin crystal have been determined by convergent-beam
electron diffraction (CBED) methods (Zuo et al., 1998;
Spence & Zuo, 1992). It remains then to determine the
magnitude and phase of every structure factor Fgh on the
reciprocal lattice from the measured intensities of
diffraction spots. This can be done if A can be obtained
from a knowledge of the moduli of the entries in S.
These moduli can be obtained from a set of N dynami-
cal diffraction patterns, in each of which Kt has been
incremented by g. Each pattern ®lls one column of S
(Spence, 1998). The following approach to this inversion
has been chosen because it involves the fewest distinct
adjustable parameters, and because its convergence (or
stagnation) properties may be understood using well
established concepts from the theory of projection onto
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convex sets (Sezan, 1992; Stark, 1987). Every S matrix is
represented by a vector in a 2N-dimensional space and
we consider two constrained sets of such matrices.
Successive jumps are made between these two sets of
matrices (in the same space), leading to their intersec-
tion if the sets are convex. If this intersection occurs at a
point, a unique solution is found. We discuss both the
convexity of these sets and the uniqueness of solutions
below.

Let A be the set of all Hermitian structure matrices
that possess symmetry across the antidiagonal, and a
given diagonal, with typical member A. Let SA be the set
of all corresponding scattering matrices, with typical
member SA � exp�2�iAt�. Let S be the set of all scat-
tering matrices whose moduli are given, and which are
symmetric, with typical member S. Then the moduli of
the elements of matrices in S are the measured
diffracted amplitudes. The phases of matrices in S are
unknown, and S is not orthogonal. SA is unitary (since A
is Hermitian), orthonormal and symmetric for the case
of a centrosymmetric crystal without absorption (or only
a mean absorption potential) in any orientation. In this
paper, we will treat only the systematics orientation for a
centric crystal, in which case there are (Nÿ1) distinct
real entries in A which we seek. (The extension to the
nonsystematics and noncentrosymmetric cases is
discussed below.) Then A has Toeplitz form, apart from
the known diagonal. The set A are valid Hamiltonian
matrices, with kinetic energy terms on the diagonal and
constant potential energy terms Ugÿh=2K along each off-
diagonal.

Since solution(s) clearly exist, SA overlaps S;
SA \ S 6� 0. We wish to ®nd the intersection Q 2 SA \ S
using the fewest number of adjustable parameters.
We therefore work in the space of S rather than
A, since every S is de®ned by the few distinct parameters
in A.

An iterative procedure may be developed in the space
of S by successive projection between the two sets SA

and S. Projection is here taken to mean the shortest
vector between the two sets, as de®ned below. If these
sets are convex and intersect at only one point, this
procedure will certainly converge to a unique solution.
A set is de®ned (loosely) to be convex if a line segment
joining any two members of the set lies entirely within
the set ± a kidney-shaped set, for example, in two
dimensions, is not convex, while ellipses are. If one or
both sets are nonconvex, the process will either
converge to the unique solution or become trapped
(stagnation). Fig. 1 shows a representation in two
dimensions for two convex sets.

If the vectors C, D etc. always join the closest points
(projections) onto each set, then they must converge to
Q. Starting from an arbitrary point S1 in S (chosen with
known amplitudes and random but symmetric phases),
we require a measure of the least distance C to the set
SA. This is

jCj � jSA ÿ S1j � jsA�1; 1� ÿ s1�1; 1�j2 � jsA�1; 2�
ÿ s1�1; 2�j2 � . . .

� minimum; �4�
where, by de®nition, SA � exp�2�iAt�: The (Nÿ1) free
parameters (structure factors) in A are adjusted to
obtain the minimum value of |C|. This projects S1 onto
the set SA, yielding SA.

The second step requires the projection S2 of SA back
onto S. We thus require

jDj � jS2 ÿ SAj � js2�1; 1� ÿ sA�1; 1�j2 � js2�1; 2�
ÿ sA�1; 2�j2 � . . .

� jr11
2 exp�i�11� ÿ r11

A exp�i�11�j2 � . . .

� minimum: �5�
Since the amplitudes r2 of S2 are known experimen-

tally, and those rA of SA have been found in the
preceding step, D is minimized by setting the angles �
and � equal in every term. (The least distance between
two complex numbers on an argand diagram occurs
when they share the same phase.) � has been found in
the previous step. Hence, equation (5) gives S2 directly,
with � � � etc.

We now replace S1 in equation (4) by this S2, and
continue to iterate as shown. We use the current esti-
mate of A (with known diagonal) to de®ne the initial
estimate of the new SA, prior to minimization. A con-
tinuation of this iteration leads to the unique solution Q.
The iteration terminates when |C| < ", whereupon an S
has been found that contains the measured moduli, and
is related to a Hermitian matrix A of correct form and
diagonal by S � exp(2�iAt).

The question of local minima (traps, stagnation),
convexity and uniqueness of solutions must now be
addressed for the N-beam dynamical problem. For
N � 1, a circle results for S (since amplitudes are ®xed),
while for the familiar soluble two-beam case �N � 2� a
torus is described in four dimensions. In general, the
topology of the set S is an N2 torus, and hence is not

Fig. 1. Two convex sets showing the convergent path C, D etc. of an
iterative algorithm between their boundaries towards a common
point at Q.
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convex. The topology of SA is not known ± it is not a
subset of S, and may or may not be convex (probably
not). Fig. 2 shows the nature of the stagnation trap at T
that can occur between two nonconvex sets.

Approaching from Y, the iteration is seen to become
trapped at T, where |C| becomes constant far from the
solutions at Q and Q0, whereas a different starting
condition at X leads to a solution at Q.

Note that, in the absence of noise, the condition
jCj � 0 distinguishes solution(s) from traps, unlike the
local minima often found when optimization routines
are applied to many other problems in physics. Here the
true solution may be distinguished from local minima
(traps).

The uniqueness of solutions may be summarized as
follows. It is possible for many different structure
matrices A (and hence matrices SA) to represent the
same scattering potential. These differ only by choice of
origin in the potential V(r) and are equivalent to a
similarity transform in their effect on SA, which affects
the phases of SA. In consequence, the sets SA and S touch
(or overlap) at many points, each one corresponding
to a different choice of origin. We may consider these
multiple solutions to be equivalent, and the preceding
iterative algorithm might be expected to locate any of
them with about equal probability. For two- or three-
dimensional potentials, the number of possible choices
of origin is in®nite; however, if the space group of the
crystal is known, symmetry constraints may be applied
to the structure factors used, resulting in a ®nite
number of possible origins. Computational trials suggest
that a similarity transformation is the only transfor-
mation that preserves the moduli of S and its ortho-
gonality, so that all points common to S and SA are
related by different choices of origin in V(r). However,
we have no formal proof that all the solutions that can
be found are equivalent.

For the systematics case considered here, the poten-
tial V(r) is one-dimensional, centrosymmetric (an even

function) and periodic. If the structure factors used to
de®ne A are taken to be real, there are then only two
possible origins, as suggested in Fig. 2. [For a simple line
of atoms, these origin choices occur either at the center
of the atoms (structure factors all positive) or midway
between the atoms (structure factors alternating in sign,
corresponding to a � phase shift).] The effect on
columns of S of changing origins in this case is the same
as the effect on structure factors, affecting only the
phases of some entries.

In summary, in the absence of noise, detection of the
condition D < " indicates a solution to the inversion
problem for some unpredictable choice of origin. Stag-
nation is also likely to occur since at least one set (S) is
known to be nonconvex. When this occurs, the algorithm
may be restarted, using different random symmetric
phases in S, as suggested in Fig. 2.

4. Numerical implementation

An algorithm has been developed to implement the
above iteration. The minimization was achieved using
the Simplex algorithm, varying the structure factors in A
(while retaining the correct symmetry and diagonal)
until a minimum was found in |C|. We use method 3 of
Moler & Van Loan (1979) to evaluate the matrix
exponential, which is found to be fast and accurate when
compared with diagonalization. Only forward-scattering
calculations are required in this algorithm. For the
second step of the iteration, the moduli of SA were
replaced with experimental values. The ®rst step was
then repeated (and so on), using the current structure
factors as the starting values of the parameters in the
simplex minimization.

If a trap is found so that |C| is unchanging, the
program restarts with the current values of Ug but new
randomly selected phases in S, as in Fig. 2. It is found
that at traps several of the structure factors have
frequently reached the correct value.

Table 1 shows results of several computational trials
for ®ve- and seven-beam cases for the 111 systematics
re¯ections of aluminium at 100 kV. The (111) Bragg
condition is satis®ed for the central column of S, with
Kt � ÿg111=2. Other columns describe successive odd-
order Bragg conditions, as Kt is incremented by g111. In
each case, the phases initially assigned to S were taken
from a uniform distribution of random phases in
ÿ� < � < �. The values of Fg listed should be multi-
plied by 10ÿ3 to give structure factors
Ug=�2K� � 1=�2�g� in reciprocal AÊ , with �g the two-beam
extinction distance. The initial F 00g values were selected
from a distribution of random numbers, uniformly
distributed in the range 0.001 > jUg=2Kj > 0.00001 AÊ ÿ1.
`True Fg' refers to the structure factors used in the
simulated experimental data to provide the measured
dynamical intensities, i.e. the modulii |sij| in S. `Retrieved
F 0g' are the structure factors found by the POCS algor-

Fig. 2. Two nonconvex sets showing a pair of solutions at Q and Q0

(corresponding to different origin choices for the scattering
potential) and a trap at T.
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ithm at convergence, de®ned by jCj< 0:02 � ". The
number of iterations and restarts are also given, together
with the results of a unitarity test, consisting of the sum
of all the moduli of the off-diagonal elements in the ®nal
S�Sy. This provides an additional check on convergence.

In case 1, the true structure factors Fg alternate in
sign, and the algorithm has quickly found the correct
magnitudes and signs F 00g for the alternative origin,
where all signs are positive. Fig. 3 shows a plot of |C| as a
function of iteration number as the algorithm converges.
The accuracy is far greater than that needed to solve
structures or distinguish structural models.

To be useful, this algorithm must solve the phase
problem. This requires that there be signi®cant multiple

scattering. (Since S is proportional to A in the kinematic
limit, the original randomly chosen phases are preserved
for all iterations in that case.) For the structure factors
used here, the ®rst-order expansion of equation (3)
differs signi®cantly from the exact result at thicknesses
above about 5 nm, so that the ability of the algorithm to
detect structure-factor phases can be tested at a thick-
ness of 17 nm. Case 2 therefore uses structure factors for
a ®ctitious centric crystal potential in which the sign of
one structure factor is negative and this negative sign
cannot be transformed away by an origin shift. The
results for Fg are in good agreement in sign and
magnitude with the true Fg values (except for the last),
despite the use of (dynamical) intensity data only as
input. By chance, the same origin has been found as used
for the simulated data.

The robustness of this algorithm can be tested by
demonstrating the independence of the results to choice
of thickness and to the starting values of the structure
factors and phases for S. In general, we ®nd that the
algorithm is very robust with respect to all starting
values, producing results that differ in the second or
third decimal place if " � 0:02 is kept large enough to
ensure brief computing times. However, the algorithm
performs poorly at larger thickness, in the sense that the
computation times then become large (several minutes
using a modern personal computer for N � 5, " � 0:02
and t > 20 nm). This suggests that the density of traps
increases with thickness. The optimum thickness seems
to be one just beyond the kinematic limit. At kinematic
thicknesses, the algorithm fails to return the correct sign
of the structure factors, as expected from the ®rst-order
expansion of equation (3). Case 3 shows a sample
calculation at t � 12 nm ± similar results are obtained at
other thicknesses in the range 5 < t < 20 nm. Case 4
shows results for N � 7.

Fig. 3. Magnitude of difference vector C as a function of iteration
number for case 1.

Table 1. Results of computational trials for inversion of ®ve- and seven-beam Al systematics data at 100 kV

Case N
Thickness
(AÊ )

Initial F 00g
(random) True Fg

Retrieved
F 00g Restarts Iterations |C| Unitarity

1 5 170 ÿ0.0345 ÿ0.8999 0.8981 0 7 0.0144 0.0039
�0.3915 �0.3630 0.3668
�0.6372 ÿ0.2110 0.2122
�0.1118 �0.1000 0.0931

2 5 170 �0.0964 ÿ0.8999 ÿ0.8992 3 16 totl 0.0128 0.0121
�0.9778 �0.3630 �0.3623
�0.2347 �0.2110 �0.2065
ÿ0.9761 �0.1000 �0.0200

3 5 120 �0.2252 �0.8999 �0.8982 0 4 0.0133 0.0066
ÿ0.7381 �0.3630 �0.3650
�0.1157 �0.2110 �0.2196
�0.9180 �0.1000 ÿ0.0212

4 7 170 �0.9416 �0.8999 �0.8982 0 3 0.0478 0.0032
�0.6441 �0.3630 �0.3630
ÿ0.1563 �0.2110 �0.2070
�0.6448 �0.1000 �0.1178
�0.4599 �0.0500 �0.0525
ÿ0.0729 �0.0100 ÿ0.0025
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5. Discussion

The purpose of this paper has been to outline a new
approach to the dynamical inversion problem and to
provide simple examples of successful inversion. The
extension of this method to the case of two-dimensional
projected potentials, larger N and acentric crystals is
straightforward but may require prohibitive amounts of
computing power. For a two-dimensional centric or
acentric projection, the number of origin choices
becomes in®nite and the sets shown in Fig. 2 will overlap
in the region of these equivalent solutions. If the space
group of the crystal has been determined (for example
by CBED analysis), then symmetry constraints can be
applied to the adjustable parameters (structure factors)
in the simplex minimization. This con®nes the search
path and reduces the number of allowable choices of
origin (e.g. to lie on a mirror plane etc.). Since the
method rapidly converges to a solution within the locally
convex regions around a solution, it must always be
faster than an exhaustive global search. It thus has the
error reduction property of the Feinup algorithm (Stark,
1987). A natural extension of this method for thick
crystals would be to start with a coarse mesh grid search
covering the whole parameter space, then apply the
POCS algorithm in a local region near solutions.

In the computed examples given here, we noted that
the last retrieved structure factor often shows a sign
error. We attribute this to the fact that this beam has the
largest excitation error, and so shows kinematic beha-
viour. It is then not possible to solve the phase (sign)
problem for this beam. It follows that this method will
work best for a dense reciprocal lattice, or large-unit-cell
crystals in zone-axis orientations, where most excitation
errors are small. We ®nd that, for the cases treated here,
the range of thicknesses for which computing times are
reasonable increases to about 30 nm at 1 MeV, for
similar reasons. Since the inverse calculation from S to A
is never used in this algorithm (Allen et al., 1999), the
zone-axis orientation can also be used for the central
column of S, combined then with even-order Bragg
conditions for the other columns.

In this work, we have chosen to optimize the crystal
structure factors. The resulting charge-density map
indicates the atomic positions and, if three-dimensional
data of suf®cient quality are obtainable, the atomic
species may also be identi®ed from the atomic peak
heights. An alternative procedure might be based on the
adjustment of atomic coordinates and species, using
model atomic scattering factors. This is equivalent to a
change of basis. Energy-dispersive X-ray analysis can be
used to give an approximate estimate of stoichiometry
and of the type of atoms present in a crystal. But a
determination of the number of atoms per cell requires
an estimate of the density of the material and there
exists no known method for determining this for the
microphases analysed by CBED. The question of which

approach involves the fewest adjustable parameters
depends on the resolution required.

As N increases in the systematics case, the number of
measured quantities in S increases as N2 � N, whereas
the number of structure factors sought increases only as
N. However, it is unclear how the density of traps varies
with N, and more computational experience is required
to determine this. An initial coarse-mesh-grid search of
the entire parameter space may be useful. Since the
method is statistical, the computation times to conver-
gence vary greatly with the initial random choice of
structure factors, from about 10 s to a few minutes using
a modern personal computer, with N � 5, " � 0:02 and t
< 20 nm. The random selection of input parameters
affects the computation time, rather than the accuracy of
the results. These times could be greatly reduced by
improving the initial guess for the structure factors, such
as the application of a Debye±Waller envelope.

Several additional constraints might also be used to
improve this approach. In particular, we have not used
the fact that the charge density that corresponds to V(r)
is nonnegative (Toeplitz, 1911; Karle & Hauptman,
1950), and this constraint, plus others from the direct
methods of X-ray crystallography, could be applied to
the structure factors as they evolve. These additional
constraints may deform the convexity of the sets. Phase
information from dynamical HREM images may also be
supplied ± we ®nd that supplying the few lowest-order
phases for just one column of S both speeds up the
algorithm and imposes a particular choice of origin.
Similarly, the phase differences measured by ptycho-
graphy may be included. Similar algorithms are under
development that operate in the space of the structure
matrices A rather than S. [The set of all A matrices of
known symmetry has the advantage of being convex;
however, the method of Allen et al. (1999) (to obtain A
from S) requires that S be orthogonal and hence that a
very restricted set of phases be used.] Finally, we note
that, for the solution of crystal structures (rather than
the accurate measurement of charge density), only very
approximate values of high-order structure factors are
needed, particularly if the aim is to distinguish possible
structural models.

This work was supported by NSF award DMR9412146
and an award from the Miller Foundation to JCHS at
UC Berkeley.
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